Artículo "Hay otros mundos posibles"
"HAY OTROS MUNDOS POSIBLES" El País 17 de Enero de 2010
Los físicos llevan décadas perplejos por la inverosímil precisión con
que parecen ajustadas las constantes fundamentales de nuestro cosmos.
Por ejemplo, bastaría aumentar en un 0,2% la masa del protón para que
fuera imposible construir un solo átomo. Sin átomos no habría estrellas
ni planetas, ni por tanto seres vivos. De modo similar, si la fuerza que
mantiene unido el núcleo de los átomos (la fuerza nuclear fuerte, para distinguirla de la débil) tuviera una magnitud ligeramente diferente, las estrellas no habrían podido cocinar el carbono en que se fundamenta toda la materia orgánica.
Otras constantes físicas también parecen tener el valor adecuado, dentro
de unos márgenes muy estrechos, para permitir la evolución de la vida.
Entre ellas están la vida media del neutrón, la masa del electrón o la
magnitud de la gravedad y las demás fuerzas fundamentales de la
naturaleza. Parecemos vivir en el único universo habitable. Los físicos
suelen llamar a esta idea el "principio antrópico", un nombre no sólo
confuso, sino casi cabalístico.
Según estos físicos, hay muchos otros conjuntos de leyes físicas que son
compatibles con la vida. Es decir, que hay otros universos posibles que
son también habitables. Jenkins y Perez han presentado sus teorías en Physical Review D (agosto de 2006 y marzo de 2009) y Scientific American (enero de 2010).
Pero todos estos argumentos se basan en cálculos que modifican una sola
constante fundamental, dejando igual todas las demás. Los estudios de
Alejandro Jenkins, de la Universidad Estatal de Florida, y Gilad Perez,
del Instituto Weizmann en Rehovolt, Israel, muestran ahora que las cosas
son muy diferentes si se alteran varias constantes a la vez.Es curioso
que el primer científico en utilizar un argumento antrópico de
ese tipo no fuera un físico, sino un naturalista, y más curioso aún que
se tratara de Alfred Russell Wallace, codescubridor junto a Darwin de la
evolución por selección natural. Wallace escribió en 1904: "Es posible
que un universo tan enorme y complejo como el que vemos a nuestro
alrededor sea un requerimiento absoluto para producir un mundo adaptado
en todo detalle para que la vida se desarrolle ordenadamente y culmine
en el hombre".
Un caso muy notable son los universos sin fuerza nuclear débil (o universos weakless, como
ellos los llaman), una de las cuatro fuerzas fundamentales de la física
junto a la gravedad, el electromagnetismo y la fuerza nuclear fuerte
mencionada antes. La fuerza débil es responsable de la radiactividad, lo
que incluye la conversión de protones en neutrones (que emite
radiación).
La fuerza débil fue necesaria poco después del Big Bang para que los
primitivos grupos de cuatro protones se convirtieran en átomos de helio,
formados por dos protones y dos neutrones. Pocas cosas parecen tan
poco negociables en la física.
Sin embargo, Perez y su equipo han diseñado un universo con sólo tres de
las fuerzas fundamentales, eliminando por completo la fuerza nuclear
débil. Aunque ello requiere ajustar varios parámetros del modelo
estándar de la física de partículas, el resultado es que las tres
fuerzas restantes se comportan igual que en nuestro universo.
También la masa de los quarks es la misma. Los quarks son las partículas
elementales que constituyen a los protones y los neutrones, y por tanto
a todos los núcleos atómicos. En el universo sin fuerza débil de Perez,
los núcleos de helio se construyen de otra forma (a partir de la fusión
de dos tipos de hidrógeno). Pero forman estrellas de todos modos, que
es de lo que se trata.
Las estrellas vivirían menos (nuestro Sol estaría ya hacia el final de
su vida) y brillarían menos, por lo que la Tierra tendría que estar seis
veces más cerca del Sol, y éste les parecería enorme a sus habitantes.
Pero el caso es que podría haber habitantes.
Los movimientos de los continentes y la actividad volcánica se deben
también a la desintegración radiactiva del uranio subterráneo, luego en
el universo de Perez no habría nada de eso. Sin embargo, la química
sería muy similar a la nuestra, si bien "la tabla periódica sólo
llegaría hasta el hierro", como dice el físico.
Una solución a la paradoja del principio antrópico ha sido propuesta por
el físico teórico Lee Smolin, del Perimeter Institute de Waterloo
(Canadá). Consciente de que la selección natural de Darwin (y Russell)
es una teoría capaz de generar diseños sin necesidad de un diseñador,
Smolin ha tomado prestada la idea para eliminar la necesidad de diseño
que parece implicar el principio antrópico.
Muchas estrellas acaban sus días colapsándose para formar un agujero
negro, y de cada agujero negro -propone Smolin- puede surgir un nuevo
universo con unas leyes físicas similares, aunque no idénticas, a las
del universo anterior.
Si esas leyes son incompatibles con la formación de estrellas, el nuevo
universo se habrá quedado sin gónadas: no hay estrellas, no hay agujeros
negros, no hay nuevos universos hijos. Los universos que mejor se
reproducen son, por definición, los que tienen las leyes físicas más
adecuadas para la formación de estrellas, y por tanto de seres vivos.
Naturalmente, esta idea implica que existen innumerables universos. Pero
esto es algo que muchos físicos creen probable de todos modos, y por
otras razones. Esta línea de pensamiento arranca de otra paradoja: el
gato de Schrödinger.
El gran físico Erwin Schrödinger ideó esta paradoja porque, al igual que
Einstein, no podía creer que Dios jugara a los dados con el mundo. Un
gato está encerrado en una caja junto a un trocito de uranio radiactivo.
Un átomo de uranio puede desintegrarse, pero no hay forma de predecir
cuándo. Todo lo que la física cuántica nos permite saber es cuál es la
probabilidad de que se desintegre en un plazo dado: digamos, por
ejemplo, que hay una probabilidad del 50% de que cualquier átomo del
trocito de uranio se desintegre en el próximo segundo.
En la caja hay un contador Geiger (capaz de detectar las partículas alfa
de la desintegración) conectado a un martillo suspendido sobre una
ampolla de gas mostaza. Si a cualquier átomo de uranio le da por
desintegrarse en el próximo segundo, adiós gato. Pero, hasta que no
abramos la caja, no tenemos forma de saber si el gato está vivo o
muerto. Sólo sabemos que hay una probabilidad del 50% de que esté vivo y
otra del 50% de que esté muerto.
Pero, según la física cuántica, el átomo de uranio está 50% intacto y
50% desintegrado a la vez. Luego el gato está 50% vivo y 50% muerto a la
vez. Por supuesto, al abrir la caja veremos que el gato está vivo, o
que está muerto. Y si está vivo, ¿dónde está el 50% de gato muerto que
coexistía con él hasta que abrimos la caja? Para Schrödinger, esta
consecuencia absurda de la interpretación probabilística del mundo
subatómico demostraba que esa interpretación era incorrecta. Dios no
juega a los dados.
El físico alemán Dieter Zeh, sin embargo, se dio cuenta en 1970 de que
había una trampa en la paradoja de Schrödinger. El estado mágico en el
que las probabilidades se superponen (ese gato que está 50% vivo y 50%
muerto simultáneamente) existe, pero es muy frágil. Una simple molécula
de aire que choque con el gato basta para destruir la magia. El gato
vivo-muerto se ramifica en un gato vivo y un gato muerto que ya no se
pueden comunicar entre sí.
Pero, una vez perdida la coherencia, ¿dónde están los dos gatos, el vivo
y el muerto? El estudiante Hugh Everett III propuso la solución en
1957, al leer su tesis doctoral: ambos gatos existen, pero en dos
universos paralelos. En el primer universo, tú abres la caja, ves el
gato muerto y te preguntas dónde está el gato vivo. En el otro, ves el
gato vivo y te preguntas dónde está el gato muerto.
"En esta misma habitación", escribe el físico teórico Michio Kaku,
"coexisten mundos donde los alemanes ganaron la II Guerra Mundial, donde
los extraterrestres nos han visitado desde el espacio exterior, donde
usted no ha nacido". Otro físico, Frank Wilczek, añade: "Una infinidad
de copias levemente diferentes de nosotros mismos están por ahí viviendo
sus vidas paralelas, y en cada momento surgen nuevos duplicados que van
ocupando nuestros muchos futuros alternativos".
El núcleo atómico se compone de protones y neutrones, que a su vez están
hechos de quarks. El protón y el neutrón tienen masas muy similares,
pero no idénticas: el neutrón es un 0,1% más pesado que el protón. Ese
porcentaje se puede alterar (imaginariamente) jugando con las masas de
los quarks, y así lo ha hecho el equipo de Jenkins.
Si la diferencia de masas creciera levemente, desaparecerían los átomos
fundamentales para la química orgánica, como el carbono y el oxígeno. Y
si la situación se invirtiera, haciendo al protón más pesado que el
neutrón, ni siquiera existiría el átomo más simple, el hidrógeno, con un
solo protón y ningún neutrón. Ésta es una manifestación más del
principio antrópico.
Pero, nuevamente, hay múltiples salidas que nadie había considerado
hasta ahora. Cada elemento químico existe en varias formas, o isótopos,
todos con el mismo número de protones, pero con algunos neutrones más o
menos. El hidrógeno, por ejemplo, siempre tiene un solo protón, pero
puede contener además un neutrón (se llama entonces deuterio) o dos
(tritio). El hidrógeno común no tiene ninguno.
Y esos dos isótopos pesados del hidrógeno sí serían estables en
un intervalo de condiciones más amplio. Lo mismo vale para algunos
isótopos del carbono y el oxígeno. Según los cálculos de Jenkins, la
relación de masas entre el protón y el neutrón no sólo puede crecer 20
veces respecto a nuestro universo (del 0,1% hasta el 2%), sino incluso
invertirse hasta que el protón pese un 1% más que el neutrón. En todos
esos universos habría formas estables del hidrógeno, el carbono y el
oxígeno.
¿Quiere decir eso que podría haber vida? Jenkins y Perez creen que sí,
aunque no sería exactamente la vida que conocemos. Los océanos, por
ejemplo, estarían hechos de agua pesada (la versión del H2O en que los
dos H son deuterio o tritio). Pero nada de esto parece un obstáculo
insalvable para la evolución biológica.
La historia de la ciencia ha implicado hasta ahora nuestra expulsión
progresiva del paraíso, o del centro geométrico de la creación.
Copérnico y su modelo heliocéntrico son un caso bien conocido de
expulsión, pero también frustrado en cierta medida, porque el paraíso se
reencarnó enseguida en la forma de un sistema solar que abarcaba el
universo entero.
Cuando se pudieron calcular las distancias a las estrellas, quedó claro
que la creación era miles de veces mayor que nuestro sistema solar, pero
entonces fue la Vía Láctea, nuestra galaxia, la que ocupó todo el
cosmos. En las primeras décadas del siglo XX, los astrónomos
descubrieron con perplejidad que ciertos objetos celestes, las
nebulosas, eran en realidad galaxias enteras y verdaderas, pero todo el
mundo supuso entonces que la Vía Láctea era la mayor y principal entre
todas ellas.
Ahora que vivimos en un arrabal perfectamente vulgar de un cosmos tan
enorme que ni la imaginación puede abarcarlo, sólo el propio cosmos
puede ser especial, y por eso el principio antrópico se puede ver como
la última reencarnación del paraíso. Pero la historia de la ciencia se
repite. Parecemos condenados a ser cada vez menos especiales.
PREGUNTAS:
1.¿Quién fue el primero en afirmar que vivimos en el único Universo habitable y con qué argumentos?
Alfred Russell Wallage junto a Darwin.
Es posible que un universo tan enorme y complejo como el que vemos a
nuestro alrededor sea requeridimiento absoluto para producir un mundo
adaptado en todo detalle para que la vida se desarrolle ordenadamente y
culmine en el hombre.
2.¿Cuáles son las fuerzas fundamentales del Universo?
Son 4 fuerzas fundamentales llamadas: Fuerza Nuclear fuerte, Fuerza Nuclear Débil, electromagnetismos y gravedad.
3.Paradoja del gato de Schondiger.
Un
gato que esta dentro de una caja junto con un átomo de uranio se muere
si se desintegra (según la física cuántica tiene 50% de posibilidades de
desintegrarse o no desintegrarse), con lo cual decía Schondiger tiene
una probabilidad de 50% de estar vivo y otro tanto de estar muerto.
Si abríamos la caja está muerto ¿donde esta el 50% de estar vivo?. Esto
solo se cumple si los átomos están completamente aislados de todo.
4.¿Qué son los quarks?
Lo que forma neutrones y potrones.
5.Breve historia de la explusión del ser humano del centro de la creación.
Geocentrismo, Eliocentismo, "Vialactismo", "Multigalixismo".
Ahora
somos concientes de que vivimos en un trocito muy pequeño "Brazo de
Orión" de un enorme cosmos , que además no es el único universo
habitable.
6.¿Son las constantes, las propiedades del Universo las justas para permitir la vida?Pon dos ejemplos y explícalos.
Sí,
la masa del potrón fuera mayor sería imposible construir un átomo y si
la fuerza nuclear fuerte fuera diferente no se podría haber formado el
carbono, fundamental para la vida, en el interior de las estrellas donde
procede.
7.¿Para
qué hizo falta la fuerza nuclear débil durante el Big-Bang y cómo se
salva esta dificultad en un Universo sin esta fuerza?¿qué otras
diferencias existirían en este caso?
Permitió la formación del helio a partir de cuatro protones.
Se
podría salvar está dificultad si el helio se formase a partir de la
fusión de dos átomos de hidrógeno en cuyo caso también se podrían formar
estrellas que brillarían y vivirían menos por lo que la tierra, debería
estar seis veces más cerca del sol que parecería enorme, para ser
habitable aunque la tabla periódica de los elementos solo llegaría hasta
el hierro y no existiría elementos radiactivos que movieran los
continentes y alimentaran a los volcanes.
8.¿Qué ocurriría en el Universo si se pudiese modificar la masa de los quarks?
No se formarían ni el carbono ni el oxígeno o ningún átomo.
9.¿Qué son los isótopos?¿Permitirían ellos la formación de los átomos necesarios para la vida en otros universos posibles?
Isótopos son los mismos átomos con distinto número de neutrones.
Los isótopos de carbono, oxígeno, hidrógeno se formarían incluso con frustaciones entre el 0,1 y el 2% de masa de los quarks.
10.¿Cuál es el error que cometen los científicos que defienden el "principio antrópico"?
Demuestran
sus afirmaciones alternando una sola de sus constantes "variables
propiedades del universo".Otra cosa ocurre si se alteran varias
constantes a la vez en cuyo caso aparecen otros universos distintos
igualmente habitables.